The Impact of Meteorological Drought at Different Time Scales from 1986 to 2020 on Vegetation Changes in the Shendong Mining Area

Author:

Chen Zhichao1,Qin He1,Zhang Xufei1,Xue Huazhu1ORCID,Wang Shidong1,Zhang Hebing1

Affiliation:

1. School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China

Abstract

The Shendong Mining Area, being the largest coal base in the world, has significant challenges in the intensive development and utilization of coal resources, as well as the impact of a dry climate, which can have serious negative effects on the growth of flora in the region. Investigating the spatial and temporal patterns of how meteorological drought affects vegetation in the Shendong Mining Area at various time scales can offer a scientific foundation for promoting sustainable development and ecological restoration in the region. This study utilizes the Standardized Precipitation Evapotranspiration Index (SPEI) and Normalized Difference Vegetation Index (NDVI) data from 1986 to 2020 in the Shendong Mining Area. It employs Slope trend analysis, a Mann–Kendall test, a Geographic Detector, and other methods to examine the spatiotemporal distribution characteristics of meteorological drought at various time scales. Additionally, the study investigates the influence of these drought patterns on vegetation growth in the Shendong Mining Area. Across the mining area, there was a general decrease in the monthly average SPEI on an annual basis. However, on a seasonal, semi-annual, and annual basis, there was a gradual increase in the annual average SPEI, with a higher rate of increase in the southern region compared to the northern region. When considering the spatial variation trend in different seasons, both positive and negative trends were observed in winter and summer. The negative trend was mainly observed in the western part of the mining area, while the positive trend was observed in the eastern part. In spring, the mining area generally experienced drought, while in autumn, it generally experienced more precipitation. The mining area exhibits a prevailing distribution of vegetation, with a greater extent in the southeast and a lesser extent in the northwest. The vegetation coverage near the mine is insufficient, resulting in a low NDVI value, which makes the area prone to drought. Over the past few years, the mining area has experienced a significant increase in vegetation coverage, indicating successful ecological restoration efforts. Various forms of land use exhibit distinct responses to drought, with forests displaying the most positive correlation and barren land displaying the strongest negative correlation. Various types of landforms exhibit varying responses to drought. Loess ridge and hill landforms demonstrate the most pronounced positive association with monthly-scale SPEI values, whereas alluvial and floodplain landforms display the poorest positive correlation with yearly scale SPEI values. The general findings of this research can be summarized as follows: (1) The mining area exhibits a general pattern of increased humidity, with the pace of humidity increase having intensified in recent times. Seasonal variations exhibit consistent cyclic patterns. (2) There are distinct regional disparities in NDVI values, with a notable peak in the southeast and a decline in the northwest. The majority of the mining area exhibits a positive trend in vegetation recovery. (3) Regional meteorological drought is a significant element that influences changes in vegetation coverage in the Shendong Mining Area. Nevertheless, it displays complexity and is more obviously impacted by other factors at a small scale. (4) It should be noted that forests and barren land exert a more significant influence on SPEI values, despite their relatively lesser spatial coverage. The predominant land use type in most locations is grasslands; however, they have a relatively minor influence on SPEI. (5) A shorter time period, higher elevation, and steeper slope gradient all contribute to a larger correlation with drought.

Funder

the State Key Project of National Natural Science Foundation of China-Key projects of joint fund for regional innovation and development

Publisher

MDPI AG

Reference50 articles.

1. Core Writing Team, Pachauri, R.K., and Meyer, L.A. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC.

2. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly;Mann;Science,2009

3. Observational and model evidence of stronger heat waves under global warming;Diffenbaugh;Proc. Natl. Acad. Sci. USA,2011

4. Drought under global warming: A review;Dai;Wiley Interdiscip. Rev. Clim. Change,2012

5. Changes in precipitation with climate change;Trenberth;Clim. Res.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3