Event-Assisted Object Tracking on High-Speed Drones in Harsh Illumination Environment

Author:

Han Yuqi1ORCID,Yu Xiaohang2ORCID,Luan Heng3,Suo Jinli1ORCID

Affiliation:

1. Department of Automation, Tsinghua University, Beijing 100084, China

2. Tsinghua-UC Berkeley Shenzhen Institute, Shenzhen 518071, China

3. Research and Development Center, TravelSky Technology Ltd., Beijing 101318, China

Abstract

Drones have been used in a variety of scenarios, such as atmospheric monitoring, fire rescue, agricultural irrigation, etc., in which accurate environmental perception is of crucial importance for both decision making and control. Among drone sensors, the RGB camera is indispensable for capturing rich visual information for vehicle navigation but encounters a grand challenge in high-dynamic-range scenes, which frequently occur in real applications. Specifically, the recorded frames suffer from underexposure and overexposure simultaneously and degenerate the successive vision tasks. To solve the problem, we take object tracking as an example and leverage the superior response of event cameras over a large intensity range to propose an event-assisted object tracking algorithm that can achieve reliable tracking under large intensity variations. Specifically, we propose to pursue feature matching from dense event signals and, based on this, to (i) design a U-Net-based image enhancement algorithm to balance RGB intensity with the help of neighboring frames in the time domain and then (ii) construct a dual-input tracking model to track the moving objects from intensity-balanced RGB video and event sequences. The proposed approach is comprehensively validated in both simulation and real experiments.

Funder

Ministry of Science and Technology of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3