A Hamilton–Jacobi Reachability-Based Minimum Separation Estimation of Integrated Manned and Unmanned Operation in Uncertain Environments

Author:

Wang Maolin1,Lv Renli1,Tai Shang2ORCID

Affiliation:

1. CAAC Key Laboratory of General Aviation Operation, Civil Aviation Management Institute of China, Beijing 100102, China

2. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Abstract

This work presents a minimum separation calculation for the integrated operation of manned and unmanned aerial vehicles in an uncertain airspace environment. Different from traditional path-planning-based research, this study investigated the minimum safe separation distance from a novel perspective of reachability analysis. The proposed computational method made use of the Hamilton–Jacobi partial differential equation (HJPDE) to obtain the backward reachable tube. Firstly, this work modeled the integrated operation in the UAS traffic management scenario, particularly focusing on the uncertainties. Then, a probabilistic reachability tube computation method was derived. Next, this work calculated the safe separation distances based on reachability analysis for three scenarios: a deterministic environment, an environment with relative position uncertainty, and an environment with relative heading angle uncertainty. By calculating the reachable tubes for a given response time, the worst-case minimum safe distances from the UAV’s perspective were determined, and the quantitative patterns were summarized. The results in this work indicate that, with an increase in the risk level and under the premise of a 1 s response time, the minimum safe separation increases from 26.7 m to 30.0 m. Finally, the paper discusses the results, explaining their rationality from both mathematical and physical perspectives.

Funder

Civil Aviation Management Institute of China

Civil Aviation Administration of China Safety Capacity Building Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3