Tendon-Driven Continuum Robots for Aerial Manipulation—A Survey of Fabrication Methods

Author:

Uthayasooriyan Anuraj1ORCID,Vanegas Fernando1ORCID,Jalali Amir2,Digumarti Krishna Manaswi1ORCID,Janabi-Sharifi Farrokh2,Gonzalez Felipe1ORCID

Affiliation:

1. QUT Centre for Robotics (QCR), School of Electrical Engineering and Robotics, Queensland University of Technology, 2 George Street, Brisbane 4000, Australia

2. Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria St, Toronto, ON M5B 2K3, Canada

Abstract

Aerial manipulators have seen a rapid uptake for multiple applications, including inspection tasks and aerial robot–human interaction in building and construction. Whilst single degree of freedom (DoF) and multiple DoF rigid link manipulators (RLMs) have been extensively discussed in the aerial manipulation literature, continuum manipulators (CMs), often referred to as continuum robots (CRs), have not received the same attention. This survey seeks to summarise the existing works on continuum manipulator-based aerial manipulation research and the most prevalent designs of continuous backbone tendon-driven continuum robots (TDCRs) and multi-link backbone TDCRs, thereby providing a structured set of guidelines for fabricating continuum robots for aerial manipulation. With a history spanning over three decades, dominated by medical applications, CRs are now increasingly being used in other domains like industrial machinery and system inspection, also gaining popularity in aerial manipulation. Fuelled by diverse applications and their associated challenges, researchers have proposed a plethora of design solutions, primarily falling within the realms of concentric tube (CT) designs or tendon-driven designs. Leveraging research works published in the past decade, we place emphasis on the preparation of backbones, support structures, tendons, stiffness control, test procedures, and error considerations. We also present our perspectives and recommendations addressing essential design and fabrication aspects of TDCRs in the context of aerial manipulation, and provide valuable guidance for future research and development endeavours in this dynamic field.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3