Abstract
In this work, the intrinsic reason for the premature failure of a 316 stainless steel heat exchanger tube in geothermal water environment is disclosed. The chemical composition of the tube was tested, and the microstructure was examined for material inspection. Fracture morphology and secondary cracks were analyzed, and electron backscattered diffraction was applied to explore the crack propagation mode. The corrosion morphology was observed. The electrochemical behavior was studied with cyclic polarization and double-loop electrochemical potentiokinetic reactivation. It is found that the main failure cause was stress corrosion cracking (SCC). Attacked by chloride ions, the tube is susceptible to SCC under the residual stress as a result of the substandard Mo and Ni content. The SCC mechanism is localized anodic dissolution, and the propagation mode is a mixture of transgranular SCC and intergranular SCC.
Funder
National Environmental Corrosion Platform of China
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献