Combating Obesity: Harnessing the Synergy of Postbiotics and Prebiotics for Enhanced Lipid Excretion and Microbiota Regulation

Author:

Zhao Yueming12,Zheng Yaping1,Xie Kui2,Hou Yanmei2,Liu Qingjing2,Jiang Yujun1,Zhang Yu1,Man Chaoxin1

Affiliation:

1. Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, China

2. Ausnutria Dairy (China) Co., Ltd., Changsha 410000, China

Abstract

Obesity is a chronic metabolic disease that can be induced by a high-fat diet (HFD) and predisposes to a variety of complications. In recent years, various bioactive substances, such as probiotics, prebiotics, and postbiotics, have been widely discussed because of their good anti-lipid and anti-inflammatory activities. In this paper, soybean protein isolate was used as a substrate to prepare the postbiotic. Compound prebiotics (galactose oligosaccharides, fructose oligosaccharides, and lactitol) preparation Aunulife Postbiotics and Prebiotics Composition (AYS) is the research object. Weight loss and bowel movements in mice induced by a high-fat diet were studied. Moreover, qualitative and quantitative analyses of small-molecule metabolites in AYS were performed to identify the functional molecules in AYS. After 12 weeks of feeding, the weight gain of mice that were fed with high-dose AYS (group H) and low-dose AYS (group L) from 4 to 12 weeks was 6.72 g and 5.25 g (p < 0.05), both of which were significantly lower than that of the high-fat diet (group DM, control group) group (7.73 g) (p < 0.05). Serum biochemical analysis showed that TC, TG, and LDL-C levels were significantly lower in mice from the H and L groups (p < 0.05). In addition, the fecal lipid content of mice in the L group reached 5.89%, which was significantly higher than that of the DM group at 4.02% (p < 0.05). The study showed that AYS changed the structure of the intestinal microbiota in mice on a high-fat diet, resulting in a decrease in the relative abundance of Firmicutes and Muribaculaceae and an increase in the relative abundance of Bacteroidetes, Verrucomicrobia, and Lactobacillus. The metabolomics study results of AYS showed that carboxylic acids and derivatives, and organonitrogen compounds accounted for 51.51% of the AYS metabolites, among which pantothenate, stachyose, betaine, and citrate had the effect of preventing obesity in mice. In conclusion, the administration of prebiotics and postbiotic-rich AYS reduces weight gain and increases fecal lipid defecation in obese mice, potentially by regulating the intestinal microbiota of mice on a high-fat diet.

Funder

Ausnutria Hyproca Nutrition Co., Ltd.

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3