Automated Affective Computing Based on Bio-Signals Analysis and Deep Learning Approach

Author:

Filippini ChiaraORCID,Di Crosta Adolfo,Palumbo Rocco,Perpetuini DavidORCID,Cardone DanielaORCID,Ceccato IreneORCID,Di Domenico Alberto,Merla Arcangelo

Abstract

Extensive possibilities of applications have rendered emotion recognition ineluctable and challenging in the fields of computer science as well as in human-machine interaction and affective computing. Fields that, in turn, are increasingly requiring real-time applications or interactions in everyday life scenarios. However, while extremely desirable, an accurate and automated emotion classification approach remains a challenging issue. To this end, this study presents an automated emotion recognition model based on easily accessible physiological signals and deep learning (DL) approaches. As a DL algorithm, a Feedforward Neural Network was employed in this study. The network outcome was further compared with canonical machine learning algorithms such as random forest (RF). The developed DL model relied on the combined use of wearables and contactless technologies, such as thermal infrared imaging. Such a model is able to classify the emotional state into four classes, derived from the linear combination of valence and arousal (referring to the circumplex model of affect’s four-quadrant structure) with an overall accuracy of 70% outperforming the 66% accuracy reached by the RF model. Considering the ecological and agile nature of the technique used the proposed model could lead to innovative applications in the affective computing field.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference79 articles.

1. Arousal and Valence Recognition of Affective Sounds Based on Electrodermal Activity

2. Affect and Emotion in Human–Computer Interaction;Beale,2008

3. The Media Equation: How People Treat Computers, Television, and New Media like Real People and Places;Reeves,1996

4. Toward machine emotional intelligence: analysis of affective physiological state

5. Recognition of Emotions in Autism: A Formal Meta-Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3