Antifungal Effect of Vitamin D3 against Cryptococcus neoformans Coincides with Reduced Biofilm Formation, Compromised Cell Wall Integrity, and Increased Generation of Reactive Oxygen Species

Author:

Huang Jian1,Lei Junwen1,Ge Anni1,Xiao Wei1,Xin Caiyan1,Song Zhangyong1ORCID,Zhang Jinping1

Affiliation:

1. Public Center of Experimental Technology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China

Abstract

Cryptococcus neoformans is an invasive fungus that causes both acute and chronic infections, especially in immunocompromised patients. Owing to the increase in the prevalence of drug-resistant pathogenic fungi and the limitations of current treatment strategies, drug repositioning has become a feasible strategy to accelerate the development of new drugs. In this study, the minimum inhibitory concentration of vitamin D3 (VD3) against C. neoformans was found to be 0.4 mg/mL by broth microdilution assay. The antifungal activities of VD3 were further verified by solid dilution assays and “time-kill” curves. The results showed that VD3 reduced fungal cell adhesion and hydrophobicity and inhibited biofilm formation at various developmental stages, as confirmed by crystal violet staining and the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay. Fluorescence staining of cellular components and a stress susceptibility assay indicated that VD3 compromised cell integrity. Reverse transcription quantitative PCR demonstrated that VD3 treatment upregulated the expression of fungal genes related to cell wall synthesis (i.e., CDA3, CHS3, FKS1, and AGS1). Moreover, VD3 enhanced cell membrane permeability and caused the accumulation of intracellular reactive oxygen species. Finally, VD3 significantly reduced the tissue fungal burden and prolonged the survival of Galleria mellonella larvae infected with C. neoformans. These results showed that VD3 could exert significant antifungal activities both in vitro and in vivo, demonstrating its potential application in the treatment of cryptococcal infections.

Funder

Sichuan Science and Technology Program

Technology Strategic Cooperation Project of Luzhou Municipal People’s Government at the Southwest Medical University

Foundation of Southwest Medical University

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3