Detection of Lowering in Sport Climbing Using Orientation-Based Sensor-Enhanced Quickdraws: A Preliminary Investigation

Author:

Moaveninejad Sadaf1ORCID,Janes Andrea2ORCID,Porcaro Camillo134ORCID

Affiliation:

1. Department of Neuroscience and Padova Neuroscience Center, University of Padova, 35128 Padova, Italy

2. Faculty of Engineering, Free University of Bozen-Bolzano, 39100 Bolzano, Italy

3. Institute of Cognitive Sciences and Technologies (ISTC), National Research Council (CNR), 00185 Rome, Italy

4. Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, UK

Abstract

Climbing gyms aim to continuously improve their offerings and make the best use of their infrastructure to provide a unique experience for their clients, the climbers. One approach to achieve this goal is to track and analyze climbing sessions from the beginning of the ascent until the climber’s descent. Detecting the climber’s descent is crucial because it indicates when the ascent has ended. This paper discusses an approach that preserves climber privacy (e.g., not using cameras) while considering the convenience of climbers and the costs to the gyms. To this aim, a hardware prototype has been developed to collect data using accelerometer sensors attached to a piece of climbing equipment mounted on the wall, called a quickdraw, which connects the climbing rope to the bolt anchors. The sensors are configured to be energy-efficient, making them practical in terms of expenses and time required for replacement when used in large quantities in a climbing gym. This paper describes the hardware specifications, studies data measured by the sensors in ultra-low power mode, detects sensors’ orientation patterns during descent on different routes, and develops a supervised approach to identify lowering. Additionally, the study emphasizes the benefits of multidisciplinary feature engineering, combining domain-specific knowledge with machine learning to enhance performance and simplify implementation.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3