Enhancement of Tomato Seed Germination and Growth Parameters through Seed Priming with Auxin-Producing Plant Growth Promoting Bacteria Strains

Author:

Pappalettere Livia1,Bartolini Susanna1ORCID,Toffanin Annita234ORCID

Affiliation:

1. Institute of Crop Science, Sant’Anna School of Advanced Studies, Piazza Martiri della Libertà 33, 56127 Pisa, Italy

2. Department of Agriculture Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy

3. CIRSEC, Centre for Climate Change Impact, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy

4. Interdepartmental Research Center Nutraceuticals and Food for Health (NUTRAFOOD), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy

Abstract

The use of microbial seed priming may be a promising tool to improve the first stages of seed germination of several herbaceous species. In tomatoes (Solanum lycopersicum L.), enhanced germination and vigor, and biotic and abiotic stress control, with a reduction in chemicals, have been reported. In this study, seeds from two Italian tomato varieties (Canestrino di Lucca and Pisanello) were primed with seven different strains of plant growth-promoting rhizobacteria (PGPB) belonging to Azospirillum baldaniorum, A. brasilense, Methylobacterium symbioticum, Bacillus amyloliquefaciens, B. licheniformis, and B. subtilis. They were selected for their ability to produce auxin. The germination test was carried out on treated seeds and the germination percentage was calculated. The obtained seedlings were transplanted and kept in greenhouse conditions. After 60 d, fresh and dry weight, root number, and length of plantlets were recorded. A general and significant improvement in the growth parameters was observed in the treated plants. All microbial strains proved to be indolacetic acid (IAA) producers using the Salkowsky method. A positive relationship between root number and length, and amount of IAA was found. The overall results suggest that the microbial priming of tomato seed could be useful for advancing organic farming, sustainable agriculture, and environmental protection.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3