Affiliation:
1. Department of Industrial Engineering & Management, Ariel University, Ariel 40700, Israel
Abstract
This paper proposes a new framework to reduce the variance and uncertainty in the risk assessment process. Today, this process is susceptible to background noise from sources of human factor biases and erroneous measurements. Our new framework consists of deconstructing the likelihood of failure function into its sub-factor and then reconstructing it in a formula that can reduce the variance and biases of a human auditor judgment. We tested our new framework on both a questionnaire study and a simulation of the risk assessment process, and the improvement in reducing the variance is significant.