High-Speed Manipulation of Microobjects Using an Automated Two-Fingered Microhand for 3D Microassembly

Author:

Kim EunhyeORCID,Kojima Masaru,Mae Yasushi,Arai Tatsuo

Abstract

To assemble microobjects including biological cells quickly and precisely, a fully automated pick-and-place operation is applied. In micromanipulation in liquid, the challenges include strong adhesion forces and high dynamic viscosity. To solve these problems, a reliable manipulation system and special releasing techniques are indispensable. A microhand having dexterous motion is utilized to grasp an object stably, and an automated stage transports the object quickly. To detach the object adhered to one of the end effectors, two releasing methods—local stream and a dynamic releasing—are utilized. A system using vision-based techniques for the recognition of two fingertips and an object, as well automated releasing methods, can increase the manipulation speed to faster than 800 ms/sphere with a 100% success rate (N = 100). To extend this manipulation technique, 2D and 3D assembly that manipulates several objects is attained by compensating the positional error. Finally, we succeed in assembling 80–120 µm of microbeads and spheroids integrated by NIH3T3 cells.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Autonomous Vision-Guided Two-Arm Collaborative Microassembly Using Learned Manipulation Model;IEEE Robotics and Automation Letters;2024-03

2. Rapid Release of Micro-Objects by Using Compound Drive Vibration;2023 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS);2023-10-09

3. Extraction of Key Foreground Information from Visual Feedback Images for Contact Micromanipulation in Liquid Environment;2022 IEEE International Conference on Cyborg and Bionic Systems (CBS);2023-03-24

4. Piezoelectric hybrid actuation mode to improve speeds in cross-scale micromanipulations;International Journal of Mechanical Sciences;2023-02

5. Robotic cell transport for tissue engineering;Robotics for Cell Manipulation and Characterization;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3