Thermal and Physical Characterization of PEG Phase Change Materials Enhanced by Carbon-Based Nanoparticles

Author:

Cabaleiro DavidORCID,Hamze SamahORCID,Fal JacekORCID,Marcos Marco A.ORCID,Estellé PatriceORCID,Żyła Gaweł

Abstract

This paper presents the preparation and thermal/physical characterization of phase change materials (PCMs) based on poly(ethylene glycol) 400 g·mol−1 and nano-enhanced by either carbon black (CB), a raw graphite/diamond nanomixture (G/D-r), a purified graphite/diamond nanomixture (G/D-p) or nano-Diamond nanopowders with purity grades of 87% or 97% (nD87 and nD97, respectively). Differential scanning calorimetry and oscillatory rheology experiments were used to provide an insight into the thermal and mechanical changes taking place during solid-liquid phase transitions of the carbon-based suspensions. PEG400-based samples loaded with 1.0 wt.% of raw graphite/diamond nanomixture (G/D-r) exhibited the lowest sub-cooling effect (with a reduction of ~2 K regarding neat PEG400). The influences that the type of carbon-based nanoadditive and nanoparticle loading (0.50 and 1.0 wt.%) have on dynamic viscosity, thermal conductivity, density and surface tension were also investigated in the temperature range from 288 to 318 K. Non-linear rheological experiments showed that all dispersions exhibited a non-Newtonian pseudo-plastic behavior, which was more noticeable in the case of carbon black nanofluids at low shear rates. The highest enhancements in thermal conductivity were observed for graphite/diamond nanomixtures (3.3–3.6%), while nano-diamond suspensions showed the largest modifications in density (0.64–0.66%). Reductions in surface tension were measured for the two nano-diamond nanopowders (nD87 and nD97), while slight increases (within experimental uncertainties) were observed for dispersions prepared using the other three carbon-based nanopowders. Finally, a good agreement was observed between the experimental surface tension measurements performed using a Du Noüy ring tensiometer and a drop-shape analyzer.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference114 articles.

1. Meeting 2030 primary energy and economic growth goals: Mission impossible?

2. World Energy Statistics and Balance 2020 (Database),2020

3. Energy Sources and Sustainability;Randolph,2018

4. Phase Change Materials for Energy Efficiency in Buildings and Their Use in Mortars

5. Global Energy Transformation: A Roadmap to 2050,2018

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3