Author:
Bouindour Samir,Snoussi Hichem,Hittawe Mohamad,Tazi Nacef,Wang Tian
Abstract
We address in this paper the problem of abnormal event detection in video-surveillance. In this context, we use only normal events as training samples. We propose to use a modified version of pretrained 3D residual convolutional network to extract spatio-temporal features, and we develop a robust classifier based on the selection of vectors of interest. It is able to learn the normal behavior model and detect potentially dangerous abnormal events. This unsupervised method prevents the marginalization of normal events that occur rarely during the training phase since it minimizes redundancy information, and adapt to the appearance of new normal events that occur during the testing phase. Experimental results on challenging datasets show the superiority of the proposed method compared to the state of the art in both frame-level and pixel-level in anomaly detection task.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献