Force in Cable of Pretensioner Tube—A Possibility of Car Accident Reconstruction

Author:

Soica Adrian1

Affiliation:

1. Department of Automotive and Transport Engineering, Transilvania University of Brasov, 500036 Brasov, Romania

Abstract

The reconstruction of traffic accidents has grown as an interdisciplinary field, encompassing bodies of research from automotive engineering, traffic and transport engineering, biomechanics, and forensic sciences. In this work, a method is proposed by which the value of the force in the safety belt buckle can be determined provided the belt buckle is equipped with a pretensioning system with a pyrotechnic trigger in the pretensioner tube, PBP—Pyrotechnical Buckle Pretensioner, or PLP—Pyrotechnical Lap Pretensioner type. The anti-return system of the pretensioner mechanism, which prevents the passenger’s body from moving forward, contains a set of balls that block the movement of the piston in the pretensioner tube after its activation. When limiting the movement, the force the human body exerts on the safety belt webbing is transformed into the deformation of the pretensioner tube by the balls of the anti-return system. Depending on the magnitude of the force, the marks left by the balls differ. This is an alternative method for determining the force that occurs in a seatbelt and causes injury to the occupants of a vehicle. The advantage of this method is that the force in the seatbelt buckle cable can be determined relatively quickly and accurately by analyzing the deformations in the pretensioner tube, without a need for expensive laboratory equipment. The limitation of the model resides in the consideration of a static system with rigid bodies. The correlation between the normal force causing the deformation of the tube and the force in the belt buckle cable is obtained by means of a mechanical model that explains the operation of the anti-return system. By comparing the values of the normal force given by the proposed model and the elastoplastic model, a good correlation is found. Finally, a regression curve is determined to help the expert in approximating the force in the buckle cable depending on the deformation size in the pretensioner tube. The value of this force also enables biomechanical or medical specialists to correlate the degree of injury to occupants of a vehicle depending on the force in the seatbelt.

Publisher

MDPI AG

Reference52 articles.

1. Brooks, D. (1989). A Comprehensive Review of Pedestrian Impact Reconstruction, SAE International. SAE Paper, no.890859.

2. Lipert, R. (1999). Motor Vehicle Accident Reconstruction and Cause Analysis, Lexis Publishing. [5th ed.].

3. Brach, R., and Brach, M. (2011). Vehicle Accident Analysis and Reconstruction Methods, SAE.

4. Fricke, L.B. (1990). Traffic Accident Reconstruction, Northwestern University Traffic Institute.

5. Struble, D.E. (2013). Automotive Accident Reconstruction: Practices and Principles, CRC Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3