Chlorophyll-a Detection Algorithms at Different Depths Using In Situ, Meteorological, and Remote Sensing Data in a Chilean Lake

Author:

Rodríguez-López Lien1ORCID,Alvarez Denisse2ORCID,Bustos Usta David3,Duran-Llacer Iongel4ORCID,Bravo Alvarez Lisandra5ORCID,Fagel Nathalie6,Bourrel Luc7,Frappart Frederic8ORCID,Urrutia Roberto9

Affiliation:

1. Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepcion 4030000, Chile

2. Centro Bahía Lomas, Facultad de Ciencias, Universidad Santo Tomás, Concepcion 4030000, Chile

3. Facultad de Oceanografía, Universidad de Concepción, Concepcion 4030000, Chile

4. Hémera Centro de Observación de la Tierra, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Santiago 8580745, Chile

5. Department of Electrical Engineering, Universidad de Concepción, Edmundo Larenas 219, Concepcion 4030000, Chile

6. UR Argile, Geochimie et Environment Sedimentary (AGEs), Geology Department, University of Liege, 4000 Liège, Belgium

7. Géosciences Environnement Toulouse, UMR 5563, Université de Toulouse, CNRS-IRD-OMP-CNES, 31000 Toulouse, France

8. INRAE, Bordeaux Sciences Agro, UMR 1391 ISPA, 33140 Villenave-d’Ornon, France

9. Facultad de Ciencias Ambientales, Universidad de Concepción, Concepcion 4030000, Chile

Abstract

In this study, we employ in situ, meteorological, and remote sensing data to estimate chlorophyll-a concentration at different depths in a South American freshwater ecosystem, focusing specifically on a lake in southern Chile known as Lake Maihue. For our analysis, we explored four different scenarios using three deep learning and traditional statistical models. These scenarios involved using field data (Scenario 1), meteorological variables (Scenario 2), and satellite data (Scenarios 3.1 and 3.2) to predict chlorophyll-a levels in Lake Maihue at three different depths (0, 15, and 30 m). Our choice of models included SARIMAX, DGLM, and LSTM, all of which showed promising statistical performance in predicting chlorophyll-a concentrations in this lake. Validation metrics for these models indicated their effectiveness in predicting chlorophyll levels, which serve as valuable indicators of the presence of algae in the water body. The coefficient of determination values ranged from 0.30 to 0.98, with the DGLM model showing the most favorable statistics in all scenarios tested. It is worth noting that the LSTM model yielded comparatively lower metrics, mainly due to the limitations of the available training data. The models employed, which use traditional statistical and machine learning models and meteorological and remote sensing data, have great potential for application in lakes in Chile and the rest of the world with similar characteristics. In addition, these results constitute a fundamental resource for decision-makers involved in the protection and conservation of water resource quality.

Funder

Proyecto Interuniversitario de Iniciación en Investigación Asociativa

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3