Abstract
Single-walled carbon nanotubes (SWCNTs), which possess electrical and thermal conductivity, mechanical strength, and flexibility, and are ultra-light weight, are an outstanding material for applications in nanoelectronics, photovoltaics, thermoelectric power generation, light emission, electrochemical energy storage, catalysis, sensors, spintronics, magnetic recording, and biomedicine. Applications of SWCNTs require nanotube samples with precisely controlled and customized electronic properties. The filling of SWCNTs is a promising approach in the fine-tuning of their electronic properties because a large variety of substances with appropriate physical and chemical properties can be introduced inside SWCNTs. The encapsulation of electron donor or acceptor substances inside SWCNTs opens the way for the Fermi-level engineering of SWCNTs for specific applications. This paper reviews the recent progress in applications of filled SWCNTs and highlights challenges that exist in the field.
Subject
General Materials Science,General Chemical Engineering
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献