Abstract
The space integration of the lithiation of aryl halides, the borylation of aryllithiums, and Suzuki–Miyaura coupling using a Pd catalyst supported by a polymer monolith flow reactor without using an intentionally added base was achieved. To scale up the process, a series connection of the monolith Pd reactor was examined. To suppress the increase in the pressure drop caused by the series connection, a monolith reactor having larger pore sizes was developed by varying the temperature of the monolith preparation. The monolithic Pd reactor having larger pore sizes enabled Suzuki–Miyaura coupling at a higher flow rate because of a lower pressure drop and, therefore, an increase in productivity. The present study indicates that series connection of the reactors with a higher flow rate serves as a good method for increasing the productivity without decreasing the yields.
Subject
Physical and Theoretical Chemistry,Catalysis
Reference150 articles.
1. Microreactors;Ehrfeld,2000
2. Chemical Micro Process Engineering;Hessel,2004
3. Micro Precess Engineering;Hessel,2009
4. Microreactors in Organic Chemistry and Catalysis;Wirth,2013
5. Chemistry in Microstructured Reactors
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献