Fischer–Tropsch: Product Selectivity–The Fingerprint of Synthetic Fuels

Author:

Shafer WilsonORCID,Gnanamani Muthu,Graham Uschi,Yang JiaORCID,Masuku CorneliusORCID,Jacobs Gary,Davis Burtron

Abstract

The bulk of the products that were synthesized from Fischer–Tropsch synthesis (FTS) is a wide range (C1–C70+) of hydrocarbons, primarily straight-chained paraffins. Additional hydrocarbon products, which can also be a majority, are linear olefins, specifically: 1-olefin, trans-2-olefin, and cis-2-olefin. Minor hydrocarbon products can include isomerized hydrocarbons, predominantly methyl-branched paraffin, cyclic hydrocarbons mainly derived from high-temperature FTS and internal olefins. Combined, these products provide 80–95% of the total products (excluding CO2) generated from syngas. A vast number of different oxygenated species, such as aldehydes, ketones, acids, and alcohols, are also embedded in this product range. These materials can be used to probe the FTS mechanism or to produce alternative chemicals. The purpose of this article is to compare the product selectivity over several FTS catalysts. Discussions center on typical product selectivity of commonly used catalysts, as well as some uncommon formulations that display selectivity anomalies. Reaction tests were conducted while using an isothermal continuously stirred tank reactor. Carbon mole percentages of CO that are converted to specific materials for Co, Fe, and Ru catalysts vary, but they depend on support type (especially with cobalt and ruthenium) and promoters (especially with iron). All three active metals produced linear alcohols as the major oxygenated product. In addition, only iron produced significant selectivities to acids, aldehydes, and ketones. Iron catalysts consistently produced the most isomerized products of the catalysts that were tested. Not only does product selectivity provide a fingerprint of the catalyst formulation, but it also points to a viable proposed mechanistic route.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Reference172 articles.

1. Syngas production for gas-to-liquids applications: technologies, issues and outlook

2. Gas-to-liquids (GTL): A review of an industry offering several routes for monetizing natural gas

3. Gas-Expanded Liquids

4. Clean fuels from coal: The path to 1972;Davis;Prepr. Symp. Am. Chem. Soc. Div. Fuel Chem.,2003

5. Indirect coal liquefaction—Where do we stand?;Zhang;Prepr. Am. Chem. Soc. Div. Pet. Chem.,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3