Advances of Nanotechnology in the Diagnosis and Treatment of Hepatocellular Carcinoma

Author:

Escutia-Gutiérrez Rebeca1,Sandoval-Rodríguez Ana1ORCID,Zamudio-Ojeda Adalberto2,Guevara-Martínez Santiago José2,Armendáriz-Borunda Juan13ORCID

Affiliation:

1. Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, Health Sciences University Center, University of Guadalajara, Guadalajara 44340, Mexico

2. Department of Physics, Exact Sciences and Engineering University Center, University of Guadalajara, Guadalajara 44340, Mexico

3. Tecnologico de Monterrey, School of Medicine and Health Sciences, Zapopan 45201, Mexico

Abstract

Nanotechnology has emerged as a promising technology in the field of hepatocellular carcinoma (HCC), specifically in the implementation of diagnosis and treatment strategies. Nanotechnology-based approaches, such as nanoparticle-based contrast agents and nanoscale imaging techniques, have shown great potential for enhancing the sensitivity and specificity of HCC detection. These approaches provide high-resolution imaging and allow for the detection of molecular markers and alterations in cellular morphology associated with HCC. In terms of treatment, nanotechnology has revolutionized HCC therapy by enabling targeted drug delivery, enhancing therapeutic efficacy, and minimizing off-target effects. Nanoparticle-based drug carriers can be functionalized with ligands specific to HCC cells, allowing for selective accumulation of therapeutic agents at the tumor site. Furthermore, nanotechnology can facilitate combination therapy by co-encapsulating multiple drugs within a single nanoparticle, allowing for synergistic effects and overcoming drug resistance. This review aims to provide an overview of recent advances in nanotechnology-based approaches for the diagnosis and treatment of HCC. Further research is needed to optimize the design and functionality of nanoparticles, improve their biocompatibility and stability, and evaluate their long-term safety and efficacy. Nonetheless, the integration of nanotechnology in HCC management holds great promise and may lead to improved patient outcomes in the future.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3