Chaos-Assisted Dynamical Tunneling in Flat Band Superwires

Author:

Graf Anton M.123ORCID,Lin Ke24ORCID,Kim MyeongSeo25ORCID,Keski-Rahkonen Joonas23ORCID,Daza Alvar26ORCID,Heller Eric J.23ORCID

Affiliation:

1. Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

2. Department of Physics, Harvard University, Cambridge, MA 02138, USA

3. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA

4. Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China

5. Harvard College, Harvard University, Cambridge, MA 02138, USA

6. Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Mostoles, Madrid, Spain

Abstract

Recent theoretical investigations have revealed unconventional transport mechanisms within high Brillouin zones of two-dimensional superlattices. Electrons can navigate along channels we call superwires, gently guided without brute force confinement. Such dynamical confinement is caused by weak superlattice deflections, markedly different from the static or energetic confinement observed in traditional wave guides or one-dimensional electron wires. The quantum properties of superwires give rise to elastic dynamical tunneling, linking disjoint regions of the corresponding classical phase space, and enabling the emergence of several parallel channels. This paper provides the underlying theory and mechanisms that facilitate dynamical tunneling assisted by chaos in periodic lattices. Moreover, we show that the mechanism of dynamical tunneling can be effectively conceptualized through the lens of a paraxial approximation. Our results further reveal that superwires predominantly exist within flat bands, emerging from eigenstates that represent linear combinations of conventional degenerate Bloch states. Finally, we quantify tunneling rates across various lattice configurations and demonstrate that tunneling can be suppressed in a controlled fashion, illustrating potential implications in future nanodevices.

Funder

Harvard Quantum Initiative

Harvard College Research Program

Emil Aaltonen Foundation

Vaisala Foundation

Oskar Huttunen Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3