Abstract
Wind turbines usually operate under nonstationary conditions, such as wide-range speed fluctuation and time-varying load. Its critical component, the planetary gearbox, is prone to malfunction or failure, which leads to downtime and repair costs. Therefore, fault diagnosis and condition monitoring for the planetary gearbox in wind turbines is a vital research topic. Meanwhile, the signals measured by the vibration sensors mounted in the gearbox exhibit time-varying and nonstationary features. In this study, a novel time-frequency method based on high-order synchrosqueezing transform (SST) and multi-taper empirical wavelet transform (MTEWT) is proposed for the wind turbine planetary gearbox under nonstationary conditions. The high-order SST uses accurate instantaneous frequency approximations to obtain a sharper time-frequency representation (TFR). As the acquired signal consists of many components, like the meshing and rotating components of the gear and bearing, the fault component may be masked by other unrelated components. The MTEWT is used to separate the fault feature from the masking components. A variety of experimental signals of the wind turbine planetary gearbox under nonstationary conditions have been analyzed to demonstrate the effectiveness and robustness of the proposed method. Results show that the proposed method is effective in diagnosing both gear and bearing faults.
Funder
National Natural Science Foundation of China
National Key Technologies R & D Program of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献