Structure–Piezoelectric Property Relationships of Thin Films Composed of Electrospun Aligned Poly(vinylidene fluoride) Nanofibers

Author:

Priangga Perdana Putra 1,Akasaka Shuichi1,Konosu Yuichi1,Zhang Shaoling1,Tanioka Akihiko1,Matsumoto Hidetoshi1ORCID

Affiliation:

1. Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan

Abstract

In the past two decades, many studies on piezoelectric nanofibers (NFs) prepared from poly(vinylidene fluoride) (PVDF) and its copolymers, including single NFs, randomly oriented nonwoven mats, and aligned NFs, have been reported. However, studies on the relationships between the PVDF NF diameter, the orientation of the β-phase crystals inside NFs, and the piezoelectric properties of the NFs are still limited. In this study, the effect of the fiber diameter on the internal molecular packing/orientation and piezoelectric properties of aligned PVDF NF thin films was investigated. Herein, piezoelectric thin films composed of densely packed, uniaxially aligned, PVDF NFs with diameters ranging from 228 to 1315 nm were prepared by means of electrospinning with a rotating collector and successive hot-pressing and poling. The effect of the diameters of PVDF NFs on their internal structures, as well as the piezoelectric properties of the thin films, was investigated. All prepared NFs mainly contained β-phase crystals with a similar total crystallinity. The orientation of the β-phase crystals inside the NFs increased with an increase in the fiber diameter, resulting in an improved transverse piezoelectric coefficient (d31) for the thin films. The output voltage of the prepared thin films reached a maximum of 2.7 V at 104 Hz.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3