Author:
Bertin ,Canale ,Ben Abdellah ,Mequignon ,Zissis
Abstract
Life cycle assessment (LCA) methodology has been used to evaluate the performance of the following lighting systems: compact fluorescent lamps (CFL), light-emitting diode (LED) lamps, and fluorescent tubes (T5 type). This work covers the singularity of the French electricity mix for indoor workplaces lighting and describes the best strategy for lamp replacement. We have defined the light loss factor to integrate the following additional parameters: lumen depreciation, dirt accumulation, and risks of failure. Therefore, we propose a new definition of the functional unit (maintained megalumen hour), and we conduct this assessment to be compliant with the standards of lighting system equipment (NF EN 12464-1). Unlike previous studies, we observed that the manufacturing phase is the most impacting over the whole life cycle, thus making the extension of LED lamps’ lifetime a more effective strategy to reduce the potential environmental impacts than increasing their efficacy. This paper highlights how the light loss factor affects the LCA results and proves that it should be taken into account for subsequent assessments. Finally, this new approach includes the real usage of the lamps in the study and contributes to lay the foundation for life cycle sustainability assessment to also evaluate the economic, social, and human impacts of lighting.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference31 articles.
1. Environmental Management–Life Cycle Assessment–Principles and Framework,2006
2. Environmental Management–Life Cycle Assessment–Requirements and Guidelines,2006
3. Critical review on life cycle inventories and environmental assessments of LED-lamps
4. Life–Cycle Assessment of Ultra–Efficient Lamps,2009
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献