A Multi-Local Search-Based SHADE for Wind Farm Layout Optimization

Author:

Yang Yifei1ORCID,Tao Sichen2ORCID,Li Haotian2ORCID,Yang Haichuan3ORCID,Tang Zheng2ORCID

Affiliation:

1. Faculty of Science and Technology, Hirosaki University, Hirosaki-shi 036-8560, Japan

2. Faculty of Engineering, University of Toyama, Toyama-shi 930-8555, Japan

3. Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8506, Japan

Abstract

Wind farm layout optimization (WFLO) is focused on utilizing algorithms to devise a more rational turbine layout, ultimately maximizing power generation efficiency. Traditionally, genetic algorithms have been frequently employed in WFLO due to the inherently discrete nature of the problem. However, in recent years, researchers have shifted towards enhancing continuous optimization algorithms and incorporating constraints to address WFLO challenges. This approach has shown remarkable promise, outperforming traditional genetic algorithms and gaining traction among researchers. To further elevate the performance of continuous optimization algorithms in the context of WFLO, we introduce a multi-local search-based SHADE, termed MS-SHADE. MS-SHADE is designed to fine-tune the trade-off between convergence speed and algorithmic diversity, reducing the likelihood of convergence stagnation in WFLO scenarios. To assess the effectiveness of MS-SHADE, we employed a more extensive and intricate wind condition model in our experiments. In a set of 16 problems, MS-SHADE’s average utilization efficiency improved by 0.14% compared to the best algorithm, while the optimal utilization efficiency increased by 0.3%. The results unequivocally demonstrate that MS-SHADE surpasses state-of-the-art WFLO algorithms by a significant margin.

Funder

Hirosaki University Research Start Support Program, Hirosaki University, Japan

Tokushima University Tenure-Track Faculty Development Support System, Tokushima University, Japan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3