Adaptive Active Disturbance Rejection Control with Recursive Parameter Identification

Author:

Michalski Jacek1ORCID,Mrotek Mikołaj1ORCID,Retinger Marek1ORCID,Kozierski Piotr1ORCID

Affiliation:

1. Institute of Robotics and Machine Intelligence, Faculty of Automatic Control, Robotics and Electrical Engineering, Poznan University of Technology, Piotrowo 3a Street, 60-965 Poznan, Poland

Abstract

This paper presents a new adaptive modification of active disturbance rejection control (ADRC) with parameter estimation based on a recursive least-squares (RLS) method. The common ADRC used in many applications relies on the simple approach, which assumes the simplification of the object into an integral chain form. However, this model-free ADRC does not guarantee the stability of a closed-loop system in the presence of noticeable modeling uncertainties, so it is compared in this paper to another approach, in which the linear part of the system is included in the ADRC framework (generalized ADRC). This incorporation of the model is examined in the paper for a wide range of model and controller parameters, considering also the presence of external disturbances as well as parameter uncertainties, pointing out the limitations of fixed-gain algorithms. Then, the adaptive modification of the model-based ADRC is proposed, which is equipped with a real-time estimation of model parameters by means of the RLS method in continuous time. The stability conditions of the proposed modification of the algorithm in the closed control loop are also analyzed. It can be concluded that, under appropriate conditions, the inclusion of information about known plant parameters into the ADRC can noticeably improve the conditions of the control system. The proposed adaptive model-based approach enables quality improvement during the control process even with initially unknown parameters, for time-varying parameters, and in the presence of parametric uncertainties and external disturbances. The tests were performed on a real plant—the task of controlling the angular velocity of the direct current (DC) motor was considered.

Funder

Poznan University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3