An Underwater Multi-Label Classification Algorithm Based on a Bilayer Graph Convolution Learning Network with Constrained Codec

Author:

Li Yun1,Wang Su2,Mo Jiawei1,Wei Xin1

Affiliation:

1. School of Information Science and Engineering, Liuzhou Institute of Technology, Liuzhou 545000, China

2. Yangzhou Branch, China Mobile Communications Group Jiangsu Co., Ltd., Yangzhou 225000, China

Abstract

Within the domain of multi-label classification for micro-videos, utilizing terrestrial datasets as a foundation, researchers have embarked on profound endeavors yielding extraordinary accomplishments. The research into multi-label classification based on underwater micro-video datasets is still in the preliminary stage. There are some challenges: the severe color distortion and visual blurring in underwater visual imaging due to water molecular scattering and absorption, the difficulty in acquiring underwater short video datasets, the sparsity of underwater short video modality features, and the formidable task of achieving high-precision underwater multi-label classification. To address these issues, a bilayer graph convolution learning network based on constrained codec (BGCLN) is established in this paper. Specifically, modality-common representation is constructed to complete the representation of common information and specific information based on the constrained codec network. Then, the attention-driven double-layer graph convolutional network module is designed to mine the correlation information between labels and enhance the modality representation. Finally, the combined modality representation fusion and multi-label classification module are used to obtain the category classifier prediction. In the underwater video multi-label classification dataset (UVMCD), the effectiveness and high classification accuracy of the proposed BGCLN have been proved by numerous experiments.

Funder

the National Natural Science Foundation of China

the Intelligent Gateway for Data Exchange in the Lijiang River Basin

the Beidou Navigation System with the Water Network

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3