Hardness Classification Using Cost-Effective Off-the-Shelf Tactile Sensors Inspired by Mechanoreceptors

Author:

Sharma Yash1,Ferreira Pedro1,Justham Laura1ORCID

Affiliation:

1. Wolfson School of Mechanical, Electrical, and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK

Abstract

Perception is essential for robotic systems, enabling effective interaction with their surroundings through actions such as grasping and touching. Traditionally, this has relied on integrating various sensor systems, including tactile sensors, cameras, and acoustic sensors. This study leverages commercially available tactile sensors for hardness classification, drawing inspiration from the functionality of human mechanoreceptors in recognizing complex object properties during grasping tasks. Unlike previous research using customized sensors, this study focuses on cost-effective, easy-to-install, and readily deployable sensors. The approach employs a qualitative method, using Shore hardness taxonomy to select objects and evaluate the performance of commercial off-the-shelf (COTS) sensors. The analysis includes data from both individual sensors and their combinations analysed using multiple machine learning approaches, and accuracy as the primary evaluation metric was considered. The findings illustrate that increasing the number of classification classes impacts accuracy, achieving 92% in binary classification, 82% in ternary, and 80% in quaternary scenarios. Notably, the performance of commercially available tactile sensors is comparable to those reported in the literature, which range from 50% to 98% accuracy, achieving 92% accuracy with a limited data set. These results highlight the capability of COTS tactile sensors in hardness classification giving accuracy levels of 92%, while being cost-effective and easier to deploy than customized tactile sensors.

Publisher

MDPI AG

Reference52 articles.

1. Progress on flexible tactile sensors in robotic applications on objects properties recognition, manipulation and human-machine interactions;Jin;Soft Sci.,2023

2. Multimodal Material identification through recursive tactile sensing;Coleman;Robot. Auton. Syst.,2018

3. Bioinspired tactile sensor for surface roughness discrimination;Yi;Sens. Actuators A Phys.,2017

4. Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition;Li;Sci. Robot.,2020

5. A Skin-Inspired Artificial Mechanoreceptor for Tactile Enhancement and Integration;Li;ACS Nano,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3