Efficient SFC Protection Method against Network Attack Risks in Air Traffic Information Networks

Author:

Yang Yong1ORCID,Wang Buhong1,Tian Jiwei2ORCID,Luo Peng1ORCID

Affiliation:

1. Information and Navigation School, Air Force Engineering University, Xi’an 710077, China

2. Air Traffic Control and Navigation School, Air Force Engineering University, Xi’an 710051, China

Abstract

With the continuous development of the civil aviation industry toward digitalization and intelligence, the closed architecture of traditional air traffic information networks struggles to meet the rapidly growing demands for air traffic services. Network function virtualization (NFV) is one of the key technologies that can address the rigidity of traditional air traffic information networks. NFV technology has facilitated the flexible deployment of air traffic services, but it has also expanded the attack surface of the network. In addressing the network attack risks faced by service function chains (SFCs) in NFV environments, a SFC protection method based on honeypots and backup technology (PBHB) is proposed to reduce the resource cost of protecting air traffic information networks while enhancing network security. Initially, PBHB utilizes the TAPD algorithm to deploy the primary VNFs as closely as possible to the shortest path between the source and destination endpoints, thus aiming to reduce SFC latency and save bandwidth resource costs. Subsequently, the RAHDR algorithm is employed to install honeypot VNFs in each physical platform that is at risk of side-channel attacks, thus updating the deployment status of honeypot VNFs in real time based on the VNF lifecycle in order to offer primary protection for SFCs. Lastly, the BDMPE algorithm was used to calculate the backup scheme with the highest protection efficiency to implement secondary protection for the SFCs that still do not meet the security requirements. Through experiments, the maximum backup limit for SFCs in PBHB was determined, confirming its satisfactory performance across various SFC arrival rates. Furthermore, performance comparisons with other SFC protection methods revealed that PBHB achieves optimizations in resources cost while ensuring SFC security and latency.

Funder

Shannxi Provincial Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3