A Hybrid-Model-Based CNC Machining Trajectory Error Prediction and Compensation Method

Author:

He Wuwei12ORCID,Zhang Lipeng12,Hu Yi23,Zhou Zheng12ORCID,Qiao Yusong12,Yu Dong1

Affiliation:

1. University of Chinese Academy of Sciences, Beijing 100049, China

2. Shenyang Institute of Computing Technology, Chinese Academy of Sciences, Shenyang 110168, China

3. Shenyang CASNC Technology Co., Ltd., Shenyang 110168, China

Abstract

Intelligent manufacturing is the main direction of Industry 4.0, pointing towards the future development of manufacturing. The core component of intelligent manufacturing is the computer numerical control (CNC) system. Predicting and compensating for machining trajectory errors by controlling the CNC system’s accuracy is of great significance in enhancing the efficiency, quality, and flexibility of intelligent manufacturing. Traditional machining trajectory error prediction and compensation methods make it challenging to consider the uncertainties that occur during the machining process, and they cannot meet the requirements of intelligent manufacturing with respect to the complexity and accuracy of process parameter optimization. In this paper, we propose a hybrid-model-based machining trajectory error prediction and compensation method to address these issues. Firstly, a digital twin framework for the CNC system, based on a hybrid model, was constructed. The machining trajectory error prediction and compensation mechanisms were then analyzed, and an artificial intelligence (AI) algorithm was used to predict the machining trajectory error. This error was then compensated for via the adaptive compensation method. Finally, the feasibility and effectiveness of the method were verified through specific experiments, and a realization case for this digital-twin-driven machining trajectory error prediction and compensation method was provided.

Funder

Quality and Reliability Testing and Evaluation Service Platform for Industrial Machine Tool in China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3