A New Approach to Determining Liquid Concentration Using Multiband Annular Ring Microwave Sensor and Polarity Correlator

Author:

Sethi WaleedORCID,Ibrahim Ahmed,Issa Khaled,Albishi AliORCID,Alshebeili Saleh

Abstract

This article presents a new approach to determining liquid concentration using a new microwave sensor and polarity correlator. The sensor design incorporates an annular ring resonator having inside three parallel lines, a trapezoid ground plane and a co-planar waveguide (CPW) tapered feeder, which altogether achieve multiple frequency bands. Multiple bands of interest are obtained at the lower end of the microwave spectrum, i.e., from 1–6 GHz, as this region is widely accepted in analyzing various liquid samples. The sensor size is 71 × 40 × 1.6 mm3 with material selection based on an economically available FR4 substrate. The sensor is realized and experimentally validated for its sensitivity by utilizing in-lab prepared aqueous solution samples. Further, liquid concentration is determined by adopting a polarity correlator, which is applied to the sensor’s responses obtained at different values.

Funder

Deanship of Scientific Research, King Saud University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microstrip Feed Loop Enclosed Resonant Biosensor;IEEE Sensors Journal;2024-03-01

2. Microfluidic Sensor for Simultaneous Liquid Classification and Concentration Detection;IEEE Microwave and Wireless Technology Letters;2024-03

3. Analysis of blood glucose monitoring – a review on recent advancements and future prospects;Multimedia Tools and Applications;2023-12-21

4. Performance Evaluation and Parameter Analysis of a Microwave Sensor for Liquid Characterization;2023 22nd Mediterranean Microwave Symposium (MMS);2023-10-30

5. 1800 MHz and 2.45 GHz Antennas for RF Energy Harvesting Applications;2023 22nd Mediterranean Microwave Symposium (MMS);2023-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3