Challenges and Applications of Emerging Nonvolatile Memory Devices

Author:

Banerjee Writam

Abstract

Emerging nonvolatile memory (eNVM) devices are pushing the limits of emerging applications beyond the scope of silicon-based complementary metal oxide semiconductors (CMOS). Among several alternatives, phase change memory, spin-transfer torque random access memory, and resistive random-access memory (RRAM) are major emerging technologies. This review explains all varieties of prototype and eNVM devices, their challenges, and their applications. A performance comparison shows that it is difficult to achieve a “universal memory” which can fulfill all requirements. Compared to other emerging alternative devices, RRAM technology is showing promise with its highly scalable, cost-effective, simple two-terminal structure, low-voltage and ultra-low-power operation capabilities, high-speed switching with high-endurance, long retention, and the possibility of three-dimensional integration for high-density applications. More precisely, this review explains the journey and device engineering of RRAM with various architectures. The challenges in different prototype and eNVM devices is disused with the conventional and novel application areas. Compare to other technologies, RRAM is the most promising approach which can be applicable as high-density memory, storage class memory, neuromorphic computing, and also in hardware security. In the post-CMOS era, a more efficient, intelligent, and secure computing system is possible to design with the help of eNVM devices.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference133 articles.

1. A Floating Gate and Its Application to Memory Devices

2. A review of emerging non-volatile memory (NVM) technologies and applications

3. International Technology Roadmap for Semiconductor Industry (ITRS) Semiconductor Industry Association, Emerging Research Devices Chapter https://en.wikipedia.org/wiki/International_Technology_Roadmap_for_Semiconductors

4. Access devices for 3D crosspoint memory

5. Ferroelectric Random Access Memories

Cited by 160 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3