Enhancing Autonomous Vehicle Perception in Adverse Weather: A Multi Objectives Model for Integrated Weather Classification and Object Detection

Author:

Aloufi Nasser1,Alnori Abdulaziz1ORCID,Basuhail Abdullah1

Affiliation:

1. Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

Robust object detection and weather classification are essential for the safe operation of autonomous vehicles (AVs) in adverse weather conditions. While existing research often treats these tasks separately, this paper proposes a novel multi objectives model that treats weather classification and object detection as a single problem using only the AV camera sensing system. Our model offers enhanced efficiency and potential performance gains by integrating image quality assessment, Super-Resolution Generative Adversarial Network (SRGAN), and a modified version of You Only Look Once (YOLO) version 5. Additionally, by leveraging the challenging Detection in Adverse Weather Nature (DAWN) dataset, which includes four types of severe weather conditions, including the often-overlooked sandy weather, we have conducted several augmentation techniques, resulting in a significant expansion of the dataset from 1027 images to 2046 images. Furthermore, we optimize the YOLO architecture for robust detection of six object classes (car, cyclist, pedestrian, motorcycle, bus, truck) across adverse weather scenarios. Comprehensive experiments demonstrate the effectiveness of our approach, achieving a mean average precision (mAP) of 74.6%, underscoring the potential of this multi objectives model to significantly advance the perception capabilities of autonomous vehicles’ cameras in challenging environments.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3