Integration of Deep Learning into the IoT: A Survey of Techniques and Challenges for Real-World Applications

Author:

Elhanashi Abdussalam1ORCID,Dini Pierpaolo1ORCID,Saponara Sergio1ORCID,Zheng Qinghe2ORCID

Affiliation:

1. Department of Information Engineering, University of Pisa, 56126 Pisa, Italy

2. School of Intelligent Engineering, Shandong Management University, Jinan 250357, China

Abstract

The internet of things (IoT) has emerged as a pivotal technological paradigm facilitating interconnected and intelligent devices across multifarious domains. The proliferation of IoT devices has resulted in an unprecedented surge of data, presenting formidable challenges concerning efficient processing, meaningful analysis, and informed decision making. Deep-learning (DL) methodologies, notably convolutional neural networks (CNNs), recurrent neural networks (RNNs), and deep-belief networks (DBNs), have demonstrated significant efficacy in mitigating these challenges by furnishing robust tools for learning and extraction of insights from vast and diverse IoT-generated data. This survey article offers a comprehensive and meticulous examination of recent scholarly endeavors encompassing the amalgamation of deep-learning techniques within the IoT landscape. Our scrutiny encompasses an extensive exploration of diverse deep-learning models, expounding on their architectures and applications within IoT domains, including but not limited to smart cities, healthcare informatics, and surveillance applications. We proffer insights into prospective research trajectories, discerning the exigency for innovative solutions that surmount extant limitations and intricacies in deploying deep-learning methodologies effectively within IoT frameworks.

Funder

Horizon Europe program

European High-Performance Computing Joint Undertaking (JU) program

PNRR project CN1 Big Data, HPC and Quantum Computing in Spoke 6 multiscale modeling and engineering applications

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3