Characterization Technique for a Doppler Radar Occupancy Sensor

Author:

Whitworth Avon1ORCID,Droitcour Amy1,Song Chenyan1,Boric-Lubecke Olga2,Lubecke Victor2

Affiliation:

1. Adnoviv, Inc., 2800 Woodlawn Drive, Suite 101J, Honolulu, HI 96822, USA

2. Department of Electrical & Computer Engineering, University of Hawaii, 2540 Dole St., Holmes Hall 483, Honolulu, HI 96822, USA

Abstract

Occupancy sensors are electronic devices used to detect the presence of people in monitored areas, and the output of these sensors can be used to optimize lighting control, heating and ventilation control, and real-estate utilization. Testing methods already exist for certain types of occupancy sensors (e.g., passive infrared) to evaluate their relative performance, allowing manufacturers to report coverage patterns for different types of motion. However, the existing published techniques are mostly tailored for passive-infrared sensors and therefore limited to evaluation of large motions, such as walking and hand movement. Here we define a characterization technique for a Doppler radar occupancy sensor based on detecting a small motion representing human breathing, using a well-defined readily reproducible target. The presented technique specifically provides a robust testing method for a single-channel continuous wave Doppler-radar based occupancy sensor, which has variation in sensitivity within each wavelength of range. By comparison with test data taken from a human subject, we demonstrate that the mobile target provides a reproducible alternative for a human target that better accounts for the impact of sensor placement. This characterization technique enables generation of coverage patterns for breathing motion for single-channel continuous wave Doppler radar-based occupancy sensors.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3