Balancing Techniques for Advanced Financial Distress Detection Using Artificial Intelligence

Author:

Kuizinienė Dovilė1ORCID,Krilavičius Tomas1ORCID

Affiliation:

1. Department of Applied Informatics, Vytautas Magnus University, Universiteto Street 10–202, 53361 Akademija, Lithuania

Abstract

Imbalanced datasets are one of the main issues encountered by artificial intelligence researchers, as machine learning (ML) algorithms can become biased toward the majority class and perform insufficiently on the minority classes. Financial distress (FD) is one of the numerous real-world applications of ML, struggling with this issue. Furthermore, the topic of financial distress holds considerable interest for both academics and practitioners due to the non-determined indicators of condition states. This research focuses on the involvement of balancing techniques according to different FD condition states. Moreover, this research was expanded by implementing ML models and dimensionality reduction techniques. During the course of this study, a Combined FD was constructed using five distinct conditions, ten distinct class balancing techniques, five distinct dimensionality reduction techniques, two features selection strategies, eleven machine learning models, and twelve weighted majority algorithms (WMAs). Results revealed that the highest area under the receiver operating characteristic (ROC) curve (AUC) score was achieved when using the extreme gradient boosting machine (XGBoost) feature selection technique, the experimental max number strategy, the undersampling methods, and the WMA 3.1 weighted majority algorithm (i.e., with categorical boosting (CatBoost), XGBoost, and random forest (RF) having equal voting weights). Moreover, this research has introduced a novel approach for setting the condition states of financial distress, including perspectives from debt and change in employment. These outcomes have been achieved utilizing authentic enterprise data from small and medium Lithuanian enterprises.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3