Application of a Centroid Frequency-Based Back Propagation Neural Network Fault Location Method for a Distribution Network Considering Renewable Energy Assessment

Author:

Zhao Ruifeng1,Lu Jiangang1,Chen Qizhan2,Zhou Niancheng3,Liu Haoyu3

Affiliation:

1. Power Dispatching and Control Center, Guangdong Power Grid Co., Ltd., Guangzhou 510600, China

2. Zhongshan Power Supply Bureau, Guangdong Power Grid Co., Ltd., Zhongshan 528400, China

3. School of Electrical Engineering, Chongqing University, Chongqing 400044, China

Abstract

The distribution network is a crucial component of the power system as it directly connects to users and serves the purpose of distributing power and balancing the load. With the integration of new energy sources through distributed generation (DG), the distribution network has undergone a transformation from a single power radial network into a complex multi-source network. Consequently, traditional fault location methods have proven inadequate in this new network structure. Therefore, the focus of this paper is to investigate fault location techniques specifically tailored for DG integration into distribution networks. This paper analyzes how fault conditions impact the characteristics of single-phase grounding faults and extracts spectral feature quantities to describe differences in zero-sequence currents under various fault distances. This paper also proposes a fault location method based on centroid frequency and a BPNN (back propagation neural network). The method uses centroid frequency to describe the features of zero-sequence currents; to simulate the mapping relationship between fault conditions and spectral features, BPNN is employed. The mapping relationship differs for different lines and distribution networks. When a line faults, the spectral features are calculated, along with the transition resistance and fault closing angle. The corresponding mapping relationship is then called upon to complete distance measurements. This location method can be applied to various types of distribution lines and fault conditions with high accuracy. Even with insufficient training samples, sample expansion can ensure accuracy in fault distance measurement. We built a distribution network consisting of four feeders with different types and lengths of each line on Simulink and verified the effectiveness of the proposed method by setting different fault conditions. The results suggest that the method has a clear advantage over other frequency domain-based approaches, especially for hybrid lines and feeder lines with branches in distribution networks. Additionally, the method achieves a measurement accuracy within a range of 100 m.

Funder

Key Science and Technology Project of China Southern Power Grid

Publisher

MDPI AG

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3