Multi-Representation Joint Dynamic Domain Adaptation Network for Cross-Database Facial Expression Recognition

Author:

Yan Jingjie1,Yue Yuebo1,Yu Kai1,Zhou Xiaoyang23,Liu Ying4,Wei Jinsheng1,Yang Yuan5ORCID

Affiliation:

1. Jiangsu Key Laboratory of Intelligent Information Processing and Communication Technology, College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

2. School of Information Science and Engineering, Southeast University, Nanjing 210096, China

3. China Mobile Zijin (Jiangsu) Innovation Research Institute Co., Ltd., Nanjing 211189, China

4. China Mobile Communications Group Jiangsu Co., Ltd., Nanjing Branch, Nanjing 211135, China

5. School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China

Abstract

In order to obtain more fine-grained information from multiple sub-feature spaces for domain adaptation, this paper proposes a novel multi-representation joint dynamic domain adaptation network (MJDDAN) and applies it to achieve cross-database facial expression recognition. The MJDDAN uses a hybrid structure to extract multi-representation features and maps the original facial expression features into multiple sub-feature spaces, aligning the expression features of the source domain and target domain in multiple sub-feature spaces from different angles to extract features more comprehensively. Moreover, the MJDDAN proposes the Joint Dynamic Maximum Mean Difference (JD-MMD) model to reduce the difference in feature distribution between different subdomains by simultaneously minimizing the maximum mean difference and local maximum mean difference in each substructure. Three databases, including eNTERFACE, FABO, and RAVDESS, are used to design a large number of cross-database transfer learning facial expression recognition experiments. The accuracy of emotion recognition experiments with eNTERFACE, FABO, and RAVDESS as target domains reach 53.64%, 43.66%, and 35.87%, respectively. Compared to the best comparison method chosen in this article, the accuracy rates were improved by 1.79%, 0.85%, and 1.02%, respectively.

Funder

National Natural Science Foundation of China

Open Project of Blockchain Technology and Data Security Key Laboratory Ministry of Industry and Information Technology

Natural Science Research Start up Foundation of Recruiting Talents of Nan[1]jing University of Posts and Telecommunications

Nanjing Science and Technology Innovation Foundation for Overseas Students

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3