Improving Synchronous Dataflow Analysis Supported by Petri Net Mappings

Author:

Rocha José-InácioORCID,Páscoa Dias Octávio,Gomes Luís

Abstract

Whereas most of the work that analyses Synchronous Dataflow (SDF) stays in the dataflow framework, this work pushes its analysis into another framework level, thereby addressing issues that are not well addressed or are even unexplored in SDF. In this manner, the paper proposes a model-driven engineering (MDE) method, combining Synchronous Dataflow (SDF) and Petri nets, to highlight and reinforce their interoperability in digital signal processing applications, cyber-physical systems, or industrial applications. Improvements regarding the settlement and exploitation of the initial conditions associated with SDF are demonstrated; this issue is crucial for every cyber-physical system, since a system’s initial conditions are crucial to ensuring the system’s liveness. The improvements outlined in this work exploit an innovating mapping in the Place/Transition (P/T) Petri net domain that is intended to reduce and predict the total amount of initial data in SDF channels. The relevance of the firing semantics engaged with the equivalent Petri net model is discussed. This paper proposes a new approach to estimate whether an SDF has a static schedule by performing simulation and property verification of the equivalent-based P/T Petri net system achieved, framed by a Petri net invariant analysis and based on the stubborn set method of Petri nets. In this way, this new approach will allow mitigating the state explosion problem. Finally, a strategy is applied to two case studies to discover all the elementary circuits (static schedules) associated with the generated model’s state-space.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Balancing Static Islands in Dynamically Scheduled Circuits Using Continuous Petri Nets;IEEE Transactions on Computers;2023-11-01

2. Path Planning of Multi-Type Robot Systems with Time Windows Based on Timed Colored Petri Nets;Applied Sciences;2022-07-07

3. Challenges in Application of Petri Nets in Manufacturing Systems;Electronics;2021-09-19

4. Probabilistic Scheduling in High-Level Synthesis;2021 IEEE 29th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM);2021-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3