Research on the Control of Multi-Agent Microgrid with Dual Neural Network Based on Priority Experience Storage Policy

Author:

Xu Fengxia1ORCID,Tong Shulin1,Li Chengye2,Du Xinyang2

Affiliation:

1. School of Mechanical and Electrical Engineering, Qiqihar University, Qiqihar 161006, China

2. State Grid Heilongjiang Provincial Electric Power Co., Ltd. Qitaihe Power Supply Company, Qitaihe 154699, China

Abstract

In this paper, an improved dual neural network control method based on multi-agent system is proposed to solve the problem of rating the frequency deviation and voltage deviation of the microgrid system due to the uneven impedance distribution of the circuit. The microgrid multi-agent system control model is constructed; the microgrid operation problem is transformed into Markov decision-making process, and the frequency error model of distributed secondary control adjusting system is established. In the course of training, the priority experience replay mechanism is introduced to accelerate the training reward return by using the experience of high feedback reward, and the frequency and voltage bias of the microgrid system are reduced. The model of isolated island microgrid of distributed power supply communication topology is established, and the control strategy of double neural network is simulated. Compared with the traditional sagging control method, the double neural network algorithm proposed in this paper stabilizes the frequency of the grid at rated frequency and improves the convergence speed. Simulation results show that the proposed method is helpful to provide stable and high-quality power resources for enterprises.

Funder

he Science and Technology Project of State Grid Heilongjiang Electric Power Co., Ltd.

Heilongjiang Provincial Natural Science Foundation of China

Heilongjiang Provincial institutions of higher learning basic scientific research funds scientific research project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3