A Power Transformer Fault Diagnosis Method Based on Improved Sand Cat Swarm Optimization Algorithm and Bidirectional Gated Recurrent Unit

Author:

Lu Wanjie12,Shi Chun1,Fu Hua1,Xu Yaosong1

Affiliation:

1. School of Electrical Control, Liaoning Technical University, Huludao 125000, China

2. School of Mechanical Engineering, Liaoning Technical University, Fuxin 123000, China

Abstract

The bidirectional gated recurrent unit (BiGRU) method based on dissolved gas analysis (DGA) has been studied in the field of power transformer fault diagnosis. However, there are still some shortcomings such as the fuzzy boundaries of DGA data, and the BiGRU parameters are difficult to determine. Therefore, this paper proposes a power transformer fault diagnosis method based on landmark isometric mapping (L-Isomap) and Improved Sand Cat Swarm Optimization (ISCSO) to optimize the BiGRU (ISCSO-BiGRU). Firstly, L-Isomap is used to extract features from DGA feature quantities. In addition, ISCSO is further proposed to optimize the BiGRU parameters to build an optimal diagnosis model based on BiGRU. For the ISCSO, four improvement methods are proposed. The traditional sand cat swarm algorithm is improved using logistic chaotic mapping, the water wave dynamic factor, adaptive weighting, and the golden sine strategy. Then, benchmarking functions are used to test the optimization performance of ISCSO and the four algorithms, and the results show that ISCSO has the best optimization accuracy and convergence speed. Finally, the fault diagnosis method based on L-Isomap and ISCSO-BiGRU is obtained. Using the model for fault diagnosis, the example simulation results show that using L-ISOMP to filter and downscale the model inputs can better improve model performance. The results are compared with the SCSO-BiGRU, WOA-BiGRU, GWO-BiGRU, and PSO-BiGRU fault diagnosis models. The results show that the fault diagnosis rate of ISCSO-BiGRU is 94.8%, which is 11.69%, 10.39%, 7.14%, and 5.9% higher than that of PSO-BiGRU, GWO-BiGRU, WOA-BiGRU, and SCSO-BiGRU, respectively, and validate that the proposed method can effectively improve the fault diagnosis performance of transformers.

Funder

National Natural Science Foundation of China

Educational Department of Liaoning Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3