Estimation of the Immunity of an AC/DC Converter of an LED Lamp to a Standardized Electromagnetic Surge

Author:

Sabat Wiesław1,Klepacki Dariusz1ORCID,Kamuda Kazimierz1ORCID,Kuryło Kazimierz1,Jankowski-Mihułowicz Piotr1ORCID

Affiliation:

1. Department of Electronic and Telecommunications Systems, Rzeszow University of Technology, W. Pola 2, 35-959 Rzeszów, Poland

Abstract

The method for estimating the immunity of an AC/DC converter built in a commercial LED lamp to a 1.2/50 µs (8/20 µs) surge has been presented in this paper. A lamp with a direct drive LED inverter was selected to present the methodology for determining the coefficient of immunity of the test object to a standardized type of surge. The choice of this configuration was important for the testing process and presentation of the methodology to estimate the immunity coefficient of the tested system. In this work, the methodology for determining the deterministic immunity factor of the model inverter to a normalized type of disturbance was presented. Considerations were carried out for a 1.2/50 µs (8/20 µs) surge in accordance with the recommendations of the EN 61000-4-5:2014 standard. This conventional surge is used in laboratory practice to test the immunity of electronic and electrical systems and devices to disturbances that can be generated in the power grid during switching processes, short circuits, and direct and indirect lightning. In the first stage of testing on test benches, the intensity of damage to the integral components of a model inverter was examined with increasing levels of disturbance. Statistical measures characterizing their impact resistance were determined for each of the elements tested. Knowing their values, the value of this coefficient was finally determined for the lamp selected for testing, and the mechanism of its damage was analyzed.

Funder

Minister of Science and Higher Education of the Republic of Poland

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3