Capacity State-of-Health Estimation of Electric Vehicle Batteries Using Machine Learning and Impedance Measurements

Author:

Barragán-Moreno AlbertoORCID,Schaltz ErikORCID,Gismero AlejandroORCID,Stroe Daniel-IoanORCID

Abstract

With the increasing adoption of electric vehicles (EVs) by the general public, a lot of research is being conducted in Li-ion battery-related topics, where state-of-health (SoH) estimation has a prominent role. Accurate knowledge of this parameter is essential for efficient and safe EV operation. In this work, machine-learning techniques are applied to estimate this parameter in EV applications and in diverse scenarios. After thoroughly analysing cell ageing in different storage conditions, a novel approach based on impedance data is developed for SoH estimation. A fully-connected feed-forward neural network (FC-FNN) is employed to estimate the battery’s maximum available capacity from a small set of impedance measurements. The method was tested for estimation in long-term scenarios and for diverse degradation procedures with data from real EV batteries. High accuracy was obtained in all situations, with a mean absolute error as low as 0.9%. Thus, the proposed algorithm constitutes a powerful and viable solution for fast and accurate SoH estimation in real-world battery management systems.

Funder

EUDP Denmark

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3