A Low-Cost Test Platform for Performance Analysis of Phasor Measurement Units

Author:

Kunac Antonijo1ORCID,Petrović Goran1ORCID,Despalatović Marin1ORCID,Jurčević Marko2ORCID

Affiliation:

1. Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Ruđera Boškovića 32, 21000 Split, Croatia

2. Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia

Abstract

In this paper, a customizable low-cost voltage waveform generator based on a real-time desktop PC and embedded data acquisition card synchronized with Coordinated Universal Time (UTC) is presented. A software approach to phase-locked loop synchronization with an external Global Positioning System (GPS) pulse signal is utilized to achieve a time uncertainty of ±1μs. This avoids expensive hardware modules for synchronization and timing purposes, which are commonly presented in literature. Besides the application for controlling the test platform, our own phasor data concentrator (PDC) application is running concurrently on the host PC. The latter is used for collecting and comparing the syncrophasor data from the test platform against the syncrophasor data measured by phasor measurement units (PMUs) under the test. The paper describes all procedures for generating reference test signals. Numerous case studies were performed, and experimental results for steady-state compliance as well as frequency ramp and phase modulation tests for dynamic compliance are presented in detail. All tests confirm that customizable test platform meets the requirements of IEEE/IEC standards. Compared to other calibrators, the cost as well as the specifications and point-by-point concept of data processing makes the described test platform suitable for performance analysis of PMU algorithms implemented on various development boards.

Funder

Croatian Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3