Improvement of Industrial Maintenance Plans through Assistance-Driven Reliability-Centered Maintenance and Case-Based Reasoning Design

Author:

Rodríguez-Padial Néstor1,Marín Marta M.1,Domingo Rosario1ORCID

Affiliation:

1. Department of Construction and Manufacturing Engineering, Universidad Nacional de Educación a Distancia (UNED), C/Juan del Rosal 12, 28040 Madrid, Spain

Abstract

The present work builds on studies where the industrial market is currently characterized by a highly variable demand in terms of the quantities and flexibility of manufacturing or mass customization, which translates into a more demanding production context in terms of the continuous changes that are required in the production systems, the effect of which results in an increase in the fatigue of the machines that make up the production systems. However, current production systems tend to use highly communicative and sensorized cyber–physical systems; these characteristics can be used to integrate them into decision-assisted systems to improve the availability of the industrial plant. The developed assisted system focuses on collecting and taking advantage of historical knowledge of industrial plant failures and breakdowns. By ideally integrating the reliability-centered maintenance (RCM) methodology and case-based reasoning (CBR) algorithms implemented in a Java application, it is possible to design maintenance plans that are adjusted to the real and changing operational context of any industrial plant. As a result, faster and more accurate decisions are made, because they are based on data. This article focuses on improving certain aspects of the developed assisted system by adding more value by incorporating fuzzy logic (FL) techniques. The aim is to improve the way of entering information about risk factors and their relative importance by incorporating natural language instead of a numerical score, resulting in increased precision in the calculation of the risk priority number (RPN) of the new cases that are incorporated into the assisted system. On the other hand, an attempt has been made to correct two of the main inherent and recognized weaknesses in the classic RPN calculation method by implementing an appropriate mix of fuzzy logic techniques.

Funder

College of Industrial Engineers of UNED

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3