Affiliation:
1. Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea
2. Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
Abstract
This paper investigates the potential of active reconfigurable intelligent surfaces (RIS) to enhance wireless-powered communication networks (WPCNs), addressing the evolving connectivity needs of the internet of things (IoT). Active RIS, capable of amplifying and reflecting signals, offers a solution to surpass the limitations of passive RIS, such as double-fading attenuation, aiming to significantly improve network throughput and coverage. Our research focuses on exploiting the amplification capabilities of active RIS to boost the overall network sum throughput, engaging in a comprehensive optimization of critical network parameters, including time allocation, reflection coefficients, and phase shift matrices specific to active RIS. The formulated problem is non-convex and highly complex due to the coupling of optimization variables. We employed a successive convex approximation algorithm to solve the throughput maximization problem by converting the non-convex constraints into approximated convex constraints and solving them iteratively. Through extensive simulations, we demonstrate that our active RIS-assisted network substantially outperforms networks facilitated by passive RIS, marking a significant advancement in WPCN performance. These findings underscore the potential of active RIS technology in realizing the full capabilities of IoT connectivity.
Funder
National Research Foundation of Korea