A Precise Calibration Method for the Robot-Assisted Percutaneous Puncture System

Author:

Li Jinbiao12,Li Minghui1,Zeng Quan2,Qian Cheng2,Li Tao2,Zhou Shoujun2ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China

2. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

Abstract

The precision and stability of the Robot-Assisted Percutaneous Puncture (RAPP) system have become increasingly crucial with the widespread integration of robotic technology in the field of medicine. The accurate calibration of the RAPP system prior to surgery significantly influences target positioning performance. This study proposes a novel system calibration method that simultaneously addresses system hand–eye calibration and robot kinematic parameters calibration, thereby enhancing the surgery success rate and ensuring patient safety. Initially, a Closed-loop Hand–eye Calibration (CHC) method is employed to rapidly establish transformation relationships among system components. These CHC results are then integrated with nominal robot kinematic parameters to preliminarily determine the system calibration parameters. Subsequently, a hybrid algorithm, combining the regularized Levenberg–Marquardt (LM) algorithm and a particle filtering algorithm, is utilized to accurately estimate the system calibration parameters in stages. Numerical simulations and puncture experiments were conducted using the proposed system calibration method and other comparative methods. The experimental results revealed that, among several comparative methods, the approach presented in this paper yields the greatest improvement in the puncture accuracy of the RAPP system, demonstrating the accuracy and effectiveness of this method. In conclusion, this calibration method significantly contributes to enhancing the precision, operational capability, and safety of the RAPP system in practical applications.

Funder

National Key R&D Project of China

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Shenzhen Technology Innovation Commission

Shenzhen Engineering Laboratory for Diagnosis & Treatment Key Technologies of Interventional Surgical Robots

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3