Author:
Natsuki Toshiaki,Urakami Kairi
Abstract
Carbon nanotubes (CNTs) can be used as atomic force microscope (AFM) probes since they are ideal tip materials with a small diameter, high aspect ratio, and stiffness. In this study, a model of CNTs clamped in an elastic medium is proposed as nanoscale force sensing AFM probes. The relationship between vibration frequency and axial force of the CNT probe clamped in an elastic medium is analyzed based on the Euler-Bernoulli beam model and the Whitney-Riley model. The clamped length of CNTs, and the elastic modulus of elastic medium affect largely on the vibration and the buckling stability of a CNT AFM probe. The result showed that the sensitivity to vibration increases as the applied loads increase. The critical load in which the vibration frequency decreases rapidly, moving to large ones with decreasing ratio of length to diameter of CNTs. The theoretical investigation on the vibration frequency of CNT loaded in the axial direction would give a useful reference for designing a CNT used as a nano-force sensor.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献