OpenWeedGUI: An Open-Source Graphical Tool for Weed Imaging and YOLO-Based Weed Detection

Author:

Xu Jiajun1,Lu Yuzhen1ORCID,Deng Boyang1ORCID

Affiliation:

1. Department of Biosystems & Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA

Abstract

Weed management impacts crop yield and quality. Machine vision technology is crucial to the realization of site-specific precision weeding for sustainable crop production. Progress has been made in developing computer vision algorithms, machine learning models, and datasets for weed recognition, but there has been a lack of open-source, publicly available software tools that link imaging hardware and offline trained models for system prototyping and evaluation, hindering community-wise development efforts. Graphical user interfaces (GUIs) are among such tools that can integrate hardware, data, and models to accelerate the deployment and adoption of machine vision-based weeding technology. This study introduces a novel GUI called OpenWeedGUI, designed for the ease of acquiring images and deploying YOLO (You Only Look Once) models for real-time weed detection, bridging the gap between machine vision and artificial intelligence (AI) technologies and users. The GUI was created in the framework of PyQt with the aid of open-source libraries for image collection, transformation, weed detection, and visualization. It consists of various functional modules for flexible user controls and a live display window for visualizing weed imagery and detection. Notably, it supports the deployment of a large suite of 31 different YOLO weed detection models, providing flexibility in model selection. Extensive indoor and field tests demonstrated the competencies of the developed software program. The OpenWeedGUI is expected to be a useful tool for promoting community efforts to advance precision weeding technology.

Funder

Discretionary Funding Initiative of Michigan State University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weed Image Augmentation by ControlNet-Added Stable Diffusion;Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications II;2024-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3