Affiliation:
1. Department of Biosystems & Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
Abstract
Weed management impacts crop yield and quality. Machine vision technology is crucial to the realization of site-specific precision weeding for sustainable crop production. Progress has been made in developing computer vision algorithms, machine learning models, and datasets for weed recognition, but there has been a lack of open-source, publicly available software tools that link imaging hardware and offline trained models for system prototyping and evaluation, hindering community-wise development efforts. Graphical user interfaces (GUIs) are among such tools that can integrate hardware, data, and models to accelerate the deployment and adoption of machine vision-based weeding technology. This study introduces a novel GUI called OpenWeedGUI, designed for the ease of acquiring images and deploying YOLO (You Only Look Once) models for real-time weed detection, bridging the gap between machine vision and artificial intelligence (AI) technologies and users. The GUI was created in the framework of PyQt with the aid of open-source libraries for image collection, transformation, weed detection, and visualization. It consists of various functional modules for flexible user controls and a live display window for visualizing weed imagery and detection. Notably, it supports the deployment of a large suite of 31 different YOLO weed detection models, providing flexibility in model selection. Extensive indoor and field tests demonstrated the competencies of the developed software program. The OpenWeedGUI is expected to be a useful tool for promoting community efforts to advance precision weeding technology.
Funder
Discretionary Funding Initiative of Michigan State University
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Weed Image Augmentation by ControlNet-Added Stable Diffusion;Synthetic Data for Artificial Intelligence and Machine Learning: Tools, Techniques, and Applications II;2024-06-07