An Algorithm Based on DAF-Net++ Model for Wood Annual Rings Segmentation

Author:

Ge Zhedong1,Zhang Ziheng2,Shi Liming1,Liu Shuai1,Gao Yisheng3,Zhou Yucheng1,Sun Qiang2

Affiliation:

1. School of Information and Electrical Engineering, Shandong Jianzhu University, Jinan 250101, China

2. Shandong Shansen CNC Technology Co., Ltd., Yuanda Road, Tengzhou 277500, China

3. School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan 250000, China

Abstract

The semantic segmentation of annual rings is a research topic of interest in wood chronology. To solve the problem of wood annual rings being difficult to segment in dense areas and being greatly affected by defects such as cracks and wormholes, this paper builds a DAF-Net++ model which is based on U-Net whose backbone network is VGG16 and filled with dense jump links, CBAM and DCAM. In this model, VGG16 is used to enhance the extraction ability of image features, dense jump links are used to fuse semantic information of different levels, DCAM provides weighting guidance for shallow features, and CBAM solves the loss of down-sampling information. Taking a Chinese fir wood as the experimental object, 1700 CT images of wood transverse section were obtained by medical CT equipment and 120 of them were randomly selected as the dataset, which was expanded by cropping and rotation, among others. DAF-Net++ was used for training the model and segmentation of the annual rings, and finally the performance of the model was evaluated. The training method is freeze training followed by thaw training, and takes Focal Loss as the loss function, ReLU as the activation function, and Adam as the optimizer. The experimental results show that, in the segmentation of CT images of Chinese fir annual rings, the MIoU of DAF-Net++ is 93.67%, the MPA is 96.76%, the PA is 96.63%, and the Recall is 96.76%. Compared with other semantic segmentation models such as U-Net, U-Net++, DeepLabv3+, etc., DAF-Net++ has better segmentation performance.

Funder

Natural Science Foundation of Shandong Province, China

Application of Computed Tomography (CT) Scanning Technology to Damage Detection of Timber Frames of Architectural Heritage

Taishan Scholar Project of Shandong Province, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3